
hhh

Generators for
High-Speed Front-Ends

J. Grosch

hhh

hhh
GESELLSCHAFT FÜR MATHEMATIK
UND DATENVERARBEITUNG MBH

FORSCHUNGSSTELLE FÜR
PROGRAMMSTRUKTUREN
AN DER UNIVERSITÄT KARLSRUHE

hhh

Project

Compiler Generation

hhh

Generators for High-Speed Front-Ends

Josef Grosch

Sept. 28, 1988

hhh

Report No. 11

Copyright  1988 GMD

Gesellschaft für Mathematik und Datenverarbeitung mbH
Forschungsstelle an der Universität Karlsruhe

Vincenz-Prießnitz-Str. 1
D-7500 Karlsruhe

2

Generators for High-Speed Front-Ends

Josef Grosch
GMD Forschungsstelle für Programmstrukturen an der Universität Karlsruhe

Vincenz-Prießnitz-Str. 1, D-7500 Karlsruhe 1, West Germany

Abstract

High-speed compilers can be constructed automatically. We present some existing tools for
the generation of fast front-ends.

Rex (Regular EXpression tool) is a scanner generator whose specifications are based on
regular expressions and arbitrary semantic actions written in one of the target languages C or
Modula-2. As scanners sometimes have to consider the context to unambiguously recognize a
token the right context can be specified by an additional regular expression and the left context
can be handled by so-called start states. The generated scanners automatically compute the line
and column position of the tokens and offer an efficient mechanism to normalize identifiers and
keywords to upper or lower case letters. The scanners are table-driven and run at a speed of
180,000 to 195,000 lines per minute on a MC 68020 processor.

Lalr is a LALR(1) parser generator accepting grammars written in extended BNF notation
which may be augmented by semantic actions expressed by statements of the target language.
The generator provides a mechanism for S-attribution, that is synthesized attributes can be com-
puted during parsing. In case of LR-conflicts, unlike other tools, Lalr provides not only informa-
tion about an internal state consisting of a set of items but it prints a derivation tree which is
much more useful to analyze the problem. Conflicts can be resolved by specifying precedence
and associativity of operators and productions. The generated parsers include automatic error
reporting, error recovery, and error repair. The parsers are table-driven and run at a speed of
580,000 lines per minute. Currently parsers can be generated in the target languages C and
Modula-2.

Ell is a LL(1) parser generator accepting the same specification language as Lalr except
that the grammars must obey the LL(1) property. The generated parsers include automatic error
reporting, recovery, and repair like Lalr. The parsers are implemented following the recursive
descent method and reach a speed of 900,000 lines per minute. The possible target languages are
again C and Modula-2.

A comparison of the above tools with the corresponding UNIX tools shows that significant
improvements have been achieved thus allowing the generation of high-speed compilers.

1. The Scanner Generator Rex

The scanner generator Rex has been developed with the aim to combine the powerful
specification method of regular expressions with the generation of highly efficient scanners. The
name Rex stands for regular expression tool, reflecting the specification method.

A scanner specification consists in principle of a set of regular expressions each associated
with a semantic action. Whenever a string constructed according to a regular expression is
recognized in the input of the scanner its semantic action which is a sequence of arbitrary state-
ments written in the target language is executed. To be able to recognize tokens depending on
their context Rex provides start states to handle left context and the right context can be specified
by an additional regular expression. If several regular expressions match the input characters,
the longest match is preferred. If there are still several possibilities, the regular expression given

3

first in the specification is chosen.

Rex generated scanners automatically provide the line and column position of each token.
For languages like Pascal and Ada where the case of letters is insignificant tokens can be nor-
malized to lower or upper case. There are predefined rules to skip white space like blanks, tabs,
or newlines.

The generated scanners are table-driven deterministic finite automatons. The tables are
compressed using the so-called comb-vector technique [ASU86]. Whereas the generator Rex is
implemented in Modula-2 it can generate scanners in the languages C and Modula-2. Currently
Rex is available for PCS Cadmus/UNIX and SUN/UNIX workstations.

The most outstanding feature of Rex is its speed. The generated scanners process nearly
200,000 lines per minute without hashing of identifiers and up to 150,000 lines per minute if
hashing is applied. This is 4 times the speed of Lex [Les75] generated scanners. In typical cases
Rex generated scanners are 4 times smaller then Lex generated ones (around 15 KB). Usually
Rex takes only 1/10 of the time of Lex to generate a scanner. All figures have been measured on
a MC 68020 processor.

In the following we will demonstrate the powerful specification method provided by Rex

and present a comparison with other scanner generators.

1.1. Structure of Specification

A complete scanner specification is structured like shown in Figure 1. The regular expres-
sions may be preceded by six sections containing arbitrary target code, which may contain
declarations to be used in the semantic actions or statements for initialization and finalization of
data structures. The DEFINE and START sections serve to abbreviate regular expressions by
identifiers and to declare start states (see below). A complete definition of the specification
language can be found in the user manual [Gro87].

1.2. Right Context

There are languages where the strategy of the longest match fails. For example in Modula-2
the input 1.. has to be recognized as tokens "1" and "..", not as "1." and ".", which are also
two legal Modula tokens. The problem can be solved using an additional regular expression to
describe this situation where the right context of a token leads to an exception in the longest
match strategy. Figure 2 shows the syntax used in Rex for regular expressions and semantic
actions to describe the 4 tokens involved in the above problem. The character ’/’ separating two
regular expressions specifies to recognize a sequence of digits only if it is followed by two dots.

EXPORT { external declarations }
GLOBAL { global declarations }
LOCAL { local declarations }
BEGIN { initialization code }
CLOSE { finalization code }
DEFAULT { default action }
EOF { end of file action }
DEFINE definition of regular expressions
START definition of start states
RULE regular expressions and semantic actions

Fig. 1: Structure of Specification

4

{0-9} + : { return SymDecimal; }
{0-9} + / ".." : { return SymDecimal; }
{0-9} + "." {0-9} * : { return SymReal ; }
".." : { return SymRange ; }
"." : { return SymDot ; }

Fig. 2: Scanner Specification Using Right Context

1.3. Start States

To handle tokens whose recognition depends on the left context or to process even tokens
which cannot be specified by regular expressions the scanners can have several start states. In
every start state a different set of regular expressions is recognized. There is a special statement
to change the current start state (yyStart). For example nested comments like in Modula can be
scanned as shown in Figure 3.

1.4. Ada Quote Problem

The Ada quote problem can also be solved using start states. The problem is to scan for
example

t’(’,’,’,’,’,’) as
t ’ (’,’ , ’,’ , ’,’) and not as
t ’(’ , ’,’ , ’,’ , ’)

which are both possible sequences of Ada tokens. The correct solution again violates the longest
match strategy. A careful study of the language definition reveals that single quotes only appear
behind identifiers and closing parentheses. Figure 4 shows the structure of a solution. After
recognizing one of these two tokens we switch to start state QUOTE which recognizes among
other tokens single quotes. After all the other tokens we switch to the predefined start state STD
where quotes are only accepted as delimiters for character literals. More examples of scanner
specifications can be found in [Gro88].

GLOBAL {VAR NestingLevel: CARDINAL;}

BEGIN {NestingLevel := 0;}

EOF {IF yyStartState = Comment THEN Error ("unclosed comment"); END;}

DEFINE CmtCh = - {*(0.

START Comment

RULES
"(*" : {INC (NestingLevel); yyStart (Comment);}

#Comment# "*)" : {DEC (NestingLevel);
IF NestingLevel = 0 THEN yyStart (STD); END;}

#Comment# "(" | "*" | CmtCh + : {}

Fig. 3: Scanner Specification Using Start States

5

LOCAL {char Word [256]; int L;}

DEFINE character = {\ -˜}.
letter = {A-Z a-z}.
digit = {0-9}.

START QUOTE

RULES

#STD# ’ character ’ : {
L = GetWord (Word);
Attribute.vChar = Word [1];
return SymCharacterLiteral;}

#QUOTE# ’ : {
yyStart (STD);
return SymApostrophe;}

"(" : {yyStart (STD); return SymLParenthesis;}

")" : {yyStart (QUOTE); return SymRParenthesis;}

letter (_? (letter | digit)+)* : {
yyStart (QUOTE); L = GetLower (Word);
Attribute.vSymbol = MakeSymbol (Word, L);
return SymIdentifier;}

Fig. 4: Scanner Specification Solving the Ada Quote Problem

1.5. Comparison of Scanner Generators

Figure 5 compares Rex to the classical UNIX scanner generator Lex [Les75] and to the new
public domain remake of Lex called Flex [Pax88] (for fast Lex). The table compares the
specification technique and the performance of the generators as well as of the generated
scanners. The specification dependent numbers for generation time and scanner size are for a
Modula-2 scanner.

2. The Parser Generator Lalr

The parser generator Lalr has been developed with the aim to combine a powerful
specification technique for context-free languages with the generation of highly efficient parsers.
As it processes the class of LALR(1) grammars we chose the name Lalr to express the power of
the specification technique.

The grammars may be written using extended BNF constructs. Each grammar rule may be
associated with a semantic action consisting of arbitrary statements written in the target
language. Whenever a grammar rule is recognized by the generated parser the associated seman-
tic action is executed. A mechanism for S-attribution (only synthesized attributes) is provided to
allow communication between the semantic actions.

In case of LR-conflicts a derivation tree is printed to ease in locating the problem. The
conflict can be resolved by specifying precedence and associativity for terminals and rules. Syn-
tactic errors are handled fully automatically by the generated parsers including error reporting,
recovery, and repair. The mentioned features are discussed in more detail in the following
chapters.

The generated parsers are table-driven. Like in the case of Rex comb-vector technique is
used to compress the parse tables. The generator Lalr is implemented in the language Modula-2.
Parsers can be generated in the languages C and Modula-2. The generator uses the algorithm
described by [DeP82] to compute the look-ahead sets although the algorithm published by
[Ive86] promises to perform better. Currently Lalr is available for PCS-Cadmus/UNIX and

6

iii
Lex Flex Rexiii

specification regular regular regular
language expressions expressions expressions

semantic actions yes yes yes
right context yes yes yes
start states yes yes yesiii
conflict solution longest match longest match longest match

first rule first rule first ruleiii
source coordinates line - line + column
case normalization - yes yes
predefined rules to - - yes

skip white space
several solutions yes yes -

(REJECT)
adjustment of by hand automatic automatic

internal arraysiii
scanning method table-driven table-driven table-driven
table compression comb-vector comb-vector comb-vectoriii
implementation C C C, Modula

languages
target languages C C C, Modulaiii
speed [lines/min.]

without hashing 36,400 139,000 182,700
with hashing 34,700 118,000 141,400iii

table size [bytes] 39,200 57,300 4,400
scanner size [bytes] 43,800 64,100 11,200iii
generation time [sec.] 73.7 7.2 4.9iiicc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Fig. 5: Comparison of Scanner Generators (speed measured on MC 68020 processor)

SUN/UNIX workstations.

Parsers generated by Lalr are twice as fast as Yacc [Joh75] generated ones. They reach a
speed of 580,000 lines per minute on a MC 68020 processor excluding the time for scanning.
The size of the parsers is only slightly increased in comparison to Yacc (e. g. 37 KB for Ada),
because there is a small price to be paid for the speed.

In the following we will discuss some features of Lalr in detail and present a comparison to
other parser generators. Further information about the implementation of Lalr can be found in
[Gro90].

2.1. Structure of Specification

The structure of a parser specification follows the style of a Rex specification as shown in
Figure 6. Again, there may be five sections to include target code. The TOKEN section defines
the terminals of the grammar and their encoding. In the OPER (for operator) section precedence
and associativity for terminals can be specified to resolve LR-conflicts. The RULE section con-
tains the grammar rules and semantic actions. A complete definition of the specification
language can be found in the user manual [GrV88].

7

EXPORT { external declarations }
GLOBAL { global declarations }
LOCAL { local declarations }
BEGIN { initialization code }
CLOSE { finalization code }
TOKEN coding of terminals
OPER precedence of operators
RULE grammar rules and semantic actions

Fig. 6: Structure of Specification

2.2. S-Attribution

Figure 7 shows an example for the syntax of grammar rules and semantic actions. The
semantic actions may access and evaluate attributes associated with the nonterminals and termi-
nals of the grammar rules. This attributes are currently denoted in the less readable "numeric"
style of Yacc [Joh75].

expr : expr ’+’ expr { $0.value := $1.value + $3.value; } .
expr : expr ’*’ expr { $0.value := $1.value * $3.value; } .
expr : ’(’ expr ’)’ { $0.value := $2.value; } .
expr : number { $0.value := $1.value; } .

Fig. 7: Grammar Rules Using S-Attribution

2.3. Ambiguous Grammars

The grammar of Figure 7 as well as the example in Figure 8 are typical examples of ambi-
guous grammars. Like Yacc we allow to resolve the resulting LR-conflicts by specifying pre-
cedence and associativity for terminals in the OPER section. Figure 9 gives an example. The
lines represent increasing levels of precedence. LEFT, RIGHT, and NONE denote
left-associativity, right-associativity, and no associativity. Rules can inherit the properties of a
terminal with the PREC suffix.

stmt : ’IF’ expr ’THEN’ stmt PREC LOW
| ’IF’ expr ’THEN’ stmt ’ELSE’ stmt PREC HIGH .

Fig. 8: Ambiguous Grammar (Dangling Else)

OPER LEFT ’+’
LEFT ’*’
NONE LOW
NONE HIGH

Fig. 9: Resolution of LR-Conflicts Using Precedence and Associativity

2.4. LR-Conflict Message

To ease in locating the reason for LR-conflicts we adopted the method proposed by
[DeP82]. Besides reporting the type of the conflict and the involved items (whatever that is for
the user) like most LR parser generators do, additionally a derivation tree is printed. Figure 10
shows an example. It shows how the items and the look-ahead tokens get into the conflict situa-
tion. In general there can be two trees if the derivations for the conflicting items are different.
Each tree consists of 3 parts. An initial part begins at the start symbol of the grammar. At a cer-
tain node (rule) two subtrees explain the emergence of the item and the look-ahead.

8

State 266

read reduce conflict

program End-of-Tokens
’PROGRAM’ identifier params ’;’ block ’.’
................................:
:
labels consts types vars procs ’BEGIN’ stmts ’END’
.......................................:
:
stmt
’IF’ expr ’THEN’ stmt ’ELSE’ stmt

:
’IF’ expr ’THEN’ stmt
:

reduce stmt -> ’IF’ expr ’THEN’ stmt. {’ELSE’} ?
read stmt -> ’IF’ expr ’THEN’ stmt.’ELSE’ stmt ?

Fig. 10: Derivation Tree for an LR-Conflict (Dangling Else)

Every line contains a right-hand side of a grammar rule. Usually the right-hand side is
indented to start below the nonterminal of the left-hand side. To avoid line overflow dotted
edges also refer to the left-hand side nonterminal and allow to shift back to the left margin. In
Figure 10 the initial tree part consists of 5 lines (not counting the dotted lines). The symbols
’stmt’ and ’ELSE’ are the roots of the other two tree parts. This location is indicated by the
"unnecessary" colon in the following line. After one intermediate line the left subtree derives
the conflicting items. The right subtree consists in this case only of the root node (the terminal
’ELSE’) indicating the look-ahead. In general this can be a tree of arbitrary size. The LR-conflict
can easily be seen from this tree fragment. If conditional statements are nested like shown there
is a read reduce conflict (also called shift reduce conflict).

2.5. Error Recovery

The generated parsers include information and algorithms to handle syntax errors com-
pletely automatically. We follow the complete backtrack-free method described by
[Röh76, Röh80, Röh82] and provide expressive reporting, recovery, and repair. Every incorrect
input is "virtually" transformed into a syntactically correct program with the consequence of

Source Program:

program test (output);
begin

if (a = b] write (a);
end.

Error Messages:

3, 13: Error syntax error
3, 13: Information expected symbols: ’)’ ’*’ ’+’ ’-’ ’/’ ’<’ ’<=’

’=’ ’<>’ ’>’ ’>=’ ’AND’ ’DIV’ ’IN’ ’MOD’ ’OR’
3, 15: Information restart point
3, 15: Repair symbol inserted : ’)’
3, 15: Repair symbol inserted : ’THEN’

Fig. 11: Example of Automatic Error Messages

9

only executing a "correct" sequence of semantic actions. Therefore the following compiler
phases like semantic analysis don’t have to bother with syntax errors. Lalr provides a prototype
error module which prints messages as shown in Figure 11. Internally the error recovery works
as follows:

- The location of the syntax error is reported.

- All the tokens that would be a legal continuation of the program are computed and reported.

- All the tokens that can serve to continue parsing are computed. A minimal sequence of tokens
is skipped until one of these tokens is found.

- The recovery location is reported.

- Parsing continues in the so-called repair mode. In this mode the parser behaves as usual
except that no tokens are read from the input. Instead a minimal sequence of tokens is syn-
thesized to repair the error. The parser stays in this mode until the input token can be
accepted. The synthesized tokens are reported. The program can be regarded as repaired, if
the skipped tokens are replaced by the synthesized ones. With leaving the repair mode pars-
ing continues as usual.

2.6. Comparison of Parser Generators

Figure 12 compares Lalr with:

- Yacc well known from UNIX [Joh75]

- Bison public domain remake of Yacc [GNU88]

- PGS Parser Generating System also developed at Karlsruhe [GrK86, KlM89]

- Ell recursive descent parser generator described in chapter 3.

The language dependent numbers exclude time and size for scanning and refer to experi-
ments with a Modula-2 parser.

The measurements of the parser speed turned out to be a hairy business. The results can be
influenced in many ways from:

- The hardware: We used a PCS Cadmus 9900 with a MC68020 processor running at a clock
rate of 20 MHz.

- The compiler: We used the C compiler of PCS.

- The language: We used Modula-2.

- The size of the language: In the case of Lalr the size of the language or the size of the gram-
mar does not influence the speed of the parser because the same table-driven algorithm and
the same data structure is used in every case. This can be different for other parsers. For
example the speed of directly coded parsers decreases with an increasing grammar size. PGS
stores states in one byte if there are less than 256 states and in two bytes otherwise. This
increases the speed for small grammars, too, at least on byte-addressable machines.

- The grammar style, the number of rules, especially chain rules and the like: We used the same
grammar for most experiments which had as few chain rules as possible and which caused as
few reduce actions as possible. This means e. g. we specified expressions in an ambiguous
style like shown in Figure 7. Exceptions are Ell which needs an LL(1) grammar and PGS,
because modifications are inelegant to resolve many ambiguities.

- The test input: We used the same large Modula program as test data in every case, of course.
Nevertheless the programming style or the code "density" influence the resulting speed. This
effect could be eliminated by selecting tokens per minute as measure. In spite of this we
chose lines per minute as measure because we find this to be more expressive. (In the

10

iii
Bison Yacc PGS Lalr Elliii

spec. language BNF BNF EBNF EBNF EBNF
grammar class LALR(1) LALR(1) LALR(1) LALR(1) LL(1)

LR(1)
SLR(1)

semantic actions yes yes yes yes yes
S-attribution numeric numeric symbolic numeric -
L-attribution - - - - plannediii
conflict message state, state, state, derivation- -

items items items tree
conflict solution precedence precedence modification precedence

associativity associativity associativity
chain rule elim. - - yes - -
error recovery by hand by hand automatic automatic automatic
error repair - - yes yes yesiii
parsing method table-driven table-driven table-driven table-driven recursive

descent
table compression comb-vector comb-vector comb-vector comb-vector -iii
impl. language C C Pascal Modula Modula
target languages C C C C C

Modula Modula Modula
Pascal
Adaiii

speed [tokens/sec.] 9,000 16,000 17,300 35,000 54,600
speed [lines/min.] 150,000 270,000 290,000 580,000 900,000iii
table size [bytes] 8,004 10,364 11,268 11,795 -
parser size [bytes] 11,136 12,548 17,616 17,416 14,344iii
gen. time [sec.] 5.0 19.6 69.5 29.6 6.4iii
availability UNIX UNIX PCS/UNIX PCS/UNIX PCS/UNIX

VAX/UNIX SUN/UNIX SUN/UNIX
BSD 4.2

SIEMENS/
BS2000iiicc

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Fig. 12: Comparison of Parser Generators (speed measured on a MC 68020 processor)

average there are 4 tokens in a line).

- The timing: We measured CPU-time and subtracted the total time and the scanner time to get
the parser time.

- The semantic actions: We specified empty semantic actions for all rules in order to simulate
the conditions in a realistic application. This has more consequences as one might think. It
disables a short cut of Yacc and the chain rule elimination [WaG84] of PGS, decreasing the
speed in both cases. A further experiment with PGS revealed even more problems. To allow
chain rule elimination we deleted the empty semantic actions for chain rules. Surprisingly,
instead of getting faster the parser was slower. The reason is that chain rule elimination
increases the number of states. Accidentally we exceeded the number of 256. Now states have
to be stored in two bytes instead of one. The additional memory accesses are more expensive
than the win from the chain rule elimination.

11

3. The Parser Generator Ell

The parser generator Ell processes LL(1) grammars which may contain extended BNF con-
structs and semantic actions and generates a recursive descent parser. A mechanism for
L-attribution (inherited and synthesized attributes evaluable during one preorder traversal) is to
be added. Like Lalr syntax errors are handled fully automatic including error reporting from a
prototype error module, error recovery, and error repair. The generator Ell is implemented in
Modula-2 and can generate parsers in C and Modula-2. Those satisfied with the restricted power
of LL(1) grammars may profit from the high speed of the generated parsers which lies around
900,000 lines per minute. For a detailed comparison see Figure 12.

4. Conclusion

We presented the tools Rex, Lalr, and Ell that allow the generation of efficient compiler
front-ends. The combination of generated scanners and parsers reach speeds of more than
100,000 lines per minute or almost 2,000 lines per second. As scanning itself is one of the dom-
inating tasks in a compiler we belief that compilers with a total performance of 1,000 lines per
second can be generated automatically. Our current work concentrates on tools for semantic
analysis based on attribute grammars and code generation based on pattern matching.

Acknowledgements

The author implemented Rex and contributed the parser skeletons in C and Modula-2 for
Lalr. The generator program Lalr was written and debugged by Bertram Vielsack who also pro-
vided the experimental results for the parser generators. The parser generator Ell was pro-
grammed by Doris Kuske.

References

[ASU86] A. V. Aho, R. Sethi and J. D. Ullman, Compilers: Principles, Techniques, and

Tools, Addison Wesley, Reading, MA, 1986.

[DeP82] F. DeRemer and T. Pennello, Efficient Computation of LALR(1) Look-Ahead Sets,
ACM Trans. Prog. Lang. and Systems 4, 4 (Oct. 1982), 615-649.

[GNU88] GNU Project, Bison - Manual Page, Public Domain Software, 1988.

[GrK86] J. Grosch and E. Klein, User Manual for the PGS-System, GMD Forschungsstelle an
der Universit

..
at Karlsruhe, Aug. 1986.

[Gro87] J. Grosch, Rex - A Scanner Generator, Compiler Generation Report No. 5, GMD
Forschungsstelle an der Universit

..
at Karlsruhe, Dec. 1987.

[Gro88] J. Grosch, Selected Examples of Scanner Specifications, Compiler Generation
Report No. 7, GMD Forschungsstelle an der Universit

..
at Karlsruhe, Mar. 1988.

[GrV88] J. Grosch and B. Vielsack, The Parser Generators Lalr and Ell, Compiler Generation
Report No. 8, GMD Forschungsstelle an der Universit

..
at Karlsruhe, Apr. 1988.

[Gro90] J. Grosch, Lalr - a Generator for Efficient Parsers, Software—Practice & Experience

20, 11 (Nov. 1990), 1115-1135.

[Ive86] F. Ives, Unifying View of Recent LALR(1) Lookahead Set Algorithms, SIGPLAN

Notices 21, 7 (1986), 131-135.

[Joh75] S. C. Johnson, Yacc — Yet Another Compiler-Compiler, Computer Science
Technical Report 32, Bell Telephone Laboratories, Murray Hill, NJ, July 1975.

[KlM89] E. Klein and M. Martin, The Parser Generating System PGS, Software—Practice &

Experience 19, 11 (Nov. 1989), 1015-1028.

12

[Les75] M. E. Lesk, LEX — A Lexical Analyzer Generator, Computing Science Technical
Report 39, Bell Telephone Laboratories, Murray Hill, NJ, 1975.

[Pax88] V. Paxson, Flex - Manual Pages, Public Domain Software, 1988.

[Röh76] J. R
..
ohrich, Syntax-Error Recovery in LR-Parsers, in Informatik-Fachberichte, vol.

1, H.-J. Schneider and M. Nagl (ed.), Springer Verlag, Berlin, 1976, 175-184.

[Röh80] J. R
..
ohrich, Methods for the Automatic Construction of Error Correcting Parsers,

Acta Inf. 13, 2 (1980), 115-139.

[Röh82] J. R
..
ohrich, Behandlung syntaktischer Fehler, Informatik Spektrum 5, 3 (1982), 171-

184.

[WaG84] W. M. Waite and G. Goos, Compiler Construction, Springer Verlag, New York,
NY, 1984.

1

Contents

Abstract .. 2

1. The Scanner Generator Rex ... 2

1.1. Structure of Specification ... 3

1.2. Right Context ... 3

1.3. Start States ... 4

1.4. Ada Quote Problem ... 4

1.5. Comparison of Scanner Generators ... 5

2. The Parser Generator Lalr .. 5

2.1. Structure of Specification ... 6

2.2. S-Attribution .. 7

2.3. Ambiguous Grammars ... 7

2.4. LR-Conflict Message ... 7

2.5. Error Recovery ... 8

2.6. Comparison of Parser Generators .. 9

3. The Parser Generator Ell .. 11

4. Conclusion ... 11

Acknowledgements .. 11

References .. 11

